Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.391
Filtrar
1.
Drug Des Devel Ther ; 18: 931-939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560524

RESUMO

Purpose: To study the potential drug-drug interactions between tofacitinib and baohuoside I and to provide the scientific basis for rational use of them in clinical practice. Methods: A total of eighteen Sprague-Dawley rats were randomly divided into three groups: control group, single-dose group (receiving a single dose of 20 mg/kg of baohuoside I), and multi-dose group (receiving multiple doses of baohuoside I for 7 days). On the seventh day, each rat was orally administered with 10 mg/kg of tofacitinib 30 minutes after giving baohuoside I or vehicle. Blood samples were collected and determined using UPLC-MS/MS. In vitro effects of baohuoside I on tofacitinib was investigated in rat liver microsomes (RLMs), as well as the underlying mechanism of inhibition. The semi-inhibitory concentration value (IC50) of baohuoside I was subsequently determined and its inhibitory mechanism against tofacitinib was analyzed. Furthermore, the interactions between baohuoside I, tofacitinib and CYP3A4 were explored using Pymol molecular docking simulation. Results: The administration of baohuoside I orally has been observed to enhance the area under the concentration-time curve (AUC) of tofacitinib and decrease the clearance (CL). The observed disparity between the single-dose and multi-dose groups was statistically significant. Furthermore, our findings suggest that the impact of baohuoside I on tofacitinib metabolism may be a mixture of non-competitive and competitive inhibition. Baohuoside I exhibit an interaction with arginine (ARG) at position 106 of the CYP3A4 enzyme through hydrogen bonding, positioning itself closer to the site of action compared to tofacitinib. Conclusion: Our study has demonstrated the presence of drug-drug interactions between baohuoside I and tofacitinib, which may arise upon pre-administration of tofacitinib. Altogether, our data indicated that an interaction existed between tofacitinib and baohuoside I and additional cares might be taken when they were co-administrated in clinic.


Assuntos
Citocromo P-450 CYP3A , Flavonoides , Piperidinas , Pirimidinas , Espectrometria de Massas em Tandem , Ratos , Animais , Ratos Sprague-Dawley , Citocromo P-450 CYP3A/metabolismo , Cromatografia Líquida , Simulação de Acoplamento Molecular , Microssomos Hepáticos/metabolismo
2.
Biopharm Drug Dispos ; 45(2): 107-114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573807

RESUMO

VX-548 is a sodium channel blocker, which acts as an analgesic. This study aims to investigate the gender differences in the pharmacokinetics and metabolism of VX-548 in rats. After intravenous administration, the area under the curve (AUC0-t) of VX-548 was much higher in female rats (1505.8 ± 47.3 ng·h/mL) than in male rats (253.8 ± 6.3 ng·h/mL), and the clearance in female rats (12.5 ± 0.8 mL/min/kg) was much lower than in male rats (65.1 ± 1.7 mL/min/kg). After oral administration, the AUC0-t in female rats was about 50-fold higher than that in male rats. The oral bioavailability in male rats was 11% while it was 96% in female rats. An in vitro metabolism study revealed that the metabolism of VX-548 in female rat liver microsomes was much slower than in male rats. Further metabolite identification suggested that the significant gender difference in pharmacokinetics was attributed to demethylation. The female rat liver microsomes showed a limited ability to convert VX-548 into desmethyl VX-548. Phenotyping experiments indicated that the formation of desmethyl VX-548 was mainly catalyzed by CYP3A2 and CYP2C11 using rat recombinant CYPs. Overall, we revealed that the pharmacokinetics and metabolism of VX-548 in male and female rats showed significant gender differences.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Compostos Organotiofosforados , Ratos , Masculino , Feminino , Animais , Fatores Sexuais , Sistema Enzimático do Citocromo P-450/metabolismo , Disponibilidade Biológica , Microssomos Hepáticos/metabolismo , Administração Oral
3.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542990

RESUMO

The potential hepatotoxicity of Herba Epimedii is a focal point in traditional Chinese medicine security applications. As determined in our previous study, the flavonoid constituents of Herba Epimedii, sagittatoside A, icariside I, baohuoside I and icaritin, are related to the hepatotoxicity of this herb. However, the hepatotoxic mechanism of these components needs to be clarified further, and whether these components can maintain their injury action following liver metabolism needs to be confirmed. Herein, the effects of sagittatoside A, icariside I, baohuoside I and icaritin on the apoptosis of HepG2 cells and the expression of key proteins, including Bax, Bcl-2, Caspase-3 and Caspase-9, were evaluated. Moreover, with liver microsome incubation, the influences of metabolism on the apoptotic activities of these components were investigated. Then, by HPLC-MS/MS analyses, the in vitro metabolic stability of these components was determined after incubation with different kinds of liver microsomes to explain the reason for the influence. The results suggested that sagittatoside A, baohuoside I and icaritin could induce apoptosis, which is likely to be closely related to the induction of the intrinsic apoptosis pathway. After metabolic incubation, the sagittatoside A and icaritin metabolism mixture could still induce apoptosis due to less metabolic elimination, while the icariside I and baohuoside I metabolism mixtures respectively got and lost the ability to induce apoptosis, probably due to quick metabolism and metabolic transformation. The findings of this study may provide important references to explore the material basis and mechanism of the hepatotoxicity of Herba Epimedii.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Microssomos Hepáticos , Humanos , Células Hep G2 , Espectrometria de Massas em Tandem , Flavonoides/farmacologia , Flavonoides/análise , Apoptose
4.
Anal Bioanal Chem ; 416(10): 2541-2551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451277

RESUMO

In this study, an online electrochemistry coupling high-performance liquid chromatography-mass spectrometry (EC-HPLC-MS) technology has been developed for simulating metabolic reactions and rapid analysis of metabolites of flavone, quercetin, and rutin, which are not only widely present compounds with pharmacological activity in nature, but also have structural similarity and variability. The simulated metabolic processes of the substrates (phase I and phase II metabolism) were implemented on the surface of glassy carbon electrode (GCE) by using different electrochemical methods. After online chromatographic separation, the products were transmitted to a mass spectrometer for detection, in order to speculate relevant reaction pathways and structural information of the reaction product. The main metabolites, including methylation, hydroxylation, hydrolysis, and conjugation reaction products, had been successfully identified through the designed in situ hyphenated technique. Furthermore, compared with metabolites produced by in vitro incubation of rat liver microsomes, it was found that the products of electrochemical simulated metabolism were more abundant with diverse metabolic pathways. The results indicated that the proposed method exhibited advantages in the sample pretreatment process and detection cycle without compromising the reliability and accuracy of the results.


Assuntos
Flavonoides , 60705 , Animais , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica , Flavonoides/metabolismo , Microssomos Hepáticos/metabolismo , Oxirredução , Reprodutibilidade dos Testes
5.
AAPS J ; 26(3): 38, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548986

RESUMO

Hepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be different in vitro and in vivo, which complicates the human translation. Permeabilized hepatocytes offer a useful tool to probe mechanistic understanding of permeability-limited metabolism and DDI. Incubation with saponin of 0.01% at 0.5 million cells/mL and 0.05% at 5 million cells/mL for 5 min at 37°C completely permeabilized the plasma membrane of hepatocytes, while leaving the membranes of subcellular organelles intact. Permeabilized hepatocytes maintained similar enzymatic activity as intact unpermeabilized hepatocytes and can be stored at -80°C for at least 7 months. This approach reduces costs by preserving leftover hepatocytes. The relatively low levels of saponin in permeabilized hepatocytes had no significant impact on the enzymatic activity. As the cytosolic contents leak out from permeabilized hepatocytes, cofactors need to be added to enable metabolic reactions. Cytosolic enzymes will no longer be present if the media are removed after cells are permeabilized. Hence permeabilized hepatocytes with and without media removal may potentially enable reaction phenotyping of cytosolic enzymes. Although permeabilized hepatocytes work similarly as human liver microsomes and S9 fractions experimentally requiring addition of cofactors, they behave more like hepatocytes maintaining enzymatic activities for over 4 h. Permeabilized hepatocytes are a great addition to the drug metabolism toolbox to provide mechanistic insights.


Assuntos
Fígado , Saponinas , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Descoberta de Drogas , Microssomos Hepáticos , Saponinas/farmacologia , Saponinas/metabolismo
6.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Assuntos
Ácidos Aristolóquicos , Doenças Mitocondriais , Humanos , Ácidos Aristolóquicos/toxicidade , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucuronosiltransferase/metabolismo , Cinética , Catálise , Difosfato de Uridina/metabolismo
7.
Rapid Commun Mass Spectrom ; 38(9): e9730, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456249

RESUMO

RATIONALE: ADB-FUBIATA is one of the most recently identified new psychoactive substance (NPS) of synthetic cannabinoids. The co-use of in vitro (human liver microsomes) and in vivo (zebrafish) models offers abundant metabolites and may give a deep insight into the metabolism of NPS. METHODS: In vivo and in vitro metabolic studies of new synthetic cannabinoid ADB-FUBIATA were carried out using zebrafish and pooled human liver microsome models. Metabilites were structurally characterized by liquid chromatography-high-resolution mass spectrometry. RESULTS: In total, 18 metabolites were discovered and identified in the pooled human liver microsomes and zebrafish, including seventeen phase I metabolites and one phase II metabolite. The main metabolic pathways of ADB-FUBIATA were hydroxylation, dehydrogenation, N-dealkylation, amide hydrolysis, glucuronidation, and combination thereof. CONCLUSION: Hydroxylated metabolites can be recommended as metabolic markers for ADB-FUBIATA because of the structural characteristics and high intensity. These metabolism characteristics of ADB-FUBIATA were useful for its further forensic or clinical related investigations.


Assuntos
Canabinoides , Perciformes , Animais , Humanos , Peixe-Zebra/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Indazóis/análise , 60705 , Canabinoides/análise , Perciformes/metabolismo
8.
Drug Metab Pharmacokinet ; 55: 101002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452615

RESUMO

Drug-metabolizing enzymes are important in drug development and therapy, but have not been fully identified and characterized in many species, lines, and breeds. Liver transcriptomic data were analyzed for phase I cytochromes P450, flavin-containing monooxygenases, and carboxylesterases and phase II UDP-glucuronosyltransferases, sulfotransferases, and glutathione S-transferases. Comparisons with a variety of species (humans, rhesus macaques, African green monkeys, baboons, common marmosets, cattle, sheep, pigs, cats, dogs, rabbits, tree shrews, rats, mice, and chickens) revealed both general similarities and differences in the transcript abundances of drug-metabolizing enzymes. Similarly, Beagle and Shiba dogs were examined by next-generation sequencing (RNA-seq). Consequently, no substantial differences in transcript abundance were noted in different breeds of pigs and dogs and in different lines of mice and rats. Therefore, the expression profiles of hepatic drug-metabolizing enzyme transcripts appear to be similar in Shiba and Beagle dogs and pig breeds and the rat and mouse lines analyzed, although some differences were found in other species.


Assuntos
Galinhas , Sistema Enzimático do Citocromo P-450 , Humanos , Animais , Cães , Ratos , Suínos/genética , Coelhos , Bovinos , Ovinos , Chlorocebus aethiops , Macaca mulatta/metabolismo , Galinhas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Especificidade da Espécie
9.
Biochem Pharmacol ; 223: 116128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492781

RESUMO

Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.


Assuntos
Carboxilesterase , Hidrolases de Éster Carboxílico , Humanos , Animais , Camundongos , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Microssomos Hepáticos/metabolismo , Fígado/metabolismo , Hidrólise , Triglicerídeos/metabolismo
10.
ACS Appl Bio Mater ; 7(4): 2197-2204, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431903

RESUMO

Human liver microsomes containing various drug-metabolizing cytochrome P450 (P450) enzymes, along with their NADPH-reductase bound to phospholipid membranes, were absorbed onto 1-pyrene butylamine pi-pi stacked with amine-functionalized multiwalled carbon nanotube-modified graphite electrodes. The interfaced microsomal biofilm demonstrated direct electrochemical communication with the underlying electrode surface and enhanced oxygen reduction electrocatalytic activity typical of heme enzymes such as P450s over the unmodified electrodes and nonenzymatic currents. Similar enhancements in currents were observed when the bioelectrodes were constructed with recombinant P450 2C9 (single isoform) expressed bactosomes. The designed liver microsomal and 2C9 bactosomal bioelectrodes successfully facilitated the electrocatalytic conversion of diclofenac, a drug candidate, into 4'-hydroxydiclofenac. The enzymatic electrocatalytic metabolite yield was several-fold greater on the modified electrodes than on the unmodified bulk graphite electrodes adsorbed with a microsomal or bactosomal film. The nonenzymatic metabolite production was less than the enzymatically catalyzed metabolite yield in the designed microsomal and bactosomal biofilm electrodes. To test the throughput potential of the designed biofilms, eight-electrode array configurations were tested with the microsomal and bactosomal biofilms toward electrochemical 4'-hydroxydiclofenac metabolite production from diclofenac. The stability of the designed microsomal bioelectrode was assessed using nonfaradaic impedance spectroscopy over 40 h, which indicated good stability.


Assuntos
Diclofenaco , Diclofenaco/análogos & derivados , Grafite , Humanos , Diclofenaco/análise , Diclofenaco/metabolismo , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Eletrodos
11.
Chem Biol Interact ; 391: 110903, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331335

RESUMO

This study delves into the intricate mechanisms underlying drug-induced liver injury (DILI) with a specific focus on bromfenac, the withdrawn nonsteroidal anti-inflammatory drug. DILI is a pervasive concern in drug development, prompting market withdrawals and posing significant challenges to healthcare. Despite the withdrawal of bromfenac due to DILI, the exact role of its microsomal metabolism in inducing hepatotoxicity remains unclear. Herein, employing HepG2 cells with human liver microsomes and UDP-glucuronic acid (UDPGA), our investigation revealed a substantial increase in bromfenac-induced cytotoxicity in the presence of UDPGA, pointing to the significance of UDP-glucuronosyltransferase (UGT)-dependent metabolism in augmenting toxicity. Notably, among the recombinant UGTs examined, UGT2B7 emerged as a pivotal enzyme in the metabolic activation of bromfenac. Metabolite identification studies disclosed the formation of reactive intermediates, with bromfenac indolinone (lactam) identified as a potential mediator of hepatotoxic effects. Moreover, in cytotoxicity experiments, the toxicity of bromfenac lactam exhibited a 34-fold increase, relative to bromfenac. The toxicity of bromfenac lactam was mitigated by nicotinamide adenine dinucleotide phosphate-dependent metabolism. This finding underscores the role of UGT-dependent metabolism in generating reactive metabolites that contribute to the observed hepatotoxicity associated with bromfenac. Understanding these metabolic pathways and the involvement of specific enzymes, such as UGT2B7, provides crucial insights into the mechanisms of bromfenac-induced liver injury. In conclusion, this research sheds light on the metabolic intricacies leading to cytotoxicity induced by bromfenac, especially emphasizing the role of UGT-dependent metabolism and the formation of reactive intermediates like bromfenac lactam. These findings offer insight into the mechanistic basis of DILI and emphasize the importance of understanding metabolism-mediated toxicity.


Assuntos
Benzofenonas , Bromobenzenos , Doença Hepática Induzida por Substâncias e Drogas , Uridina Difosfato Ácido Glucurônico , Humanos , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato Ácido Glucurônico/farmacologia , Microssomos Hepáticos/metabolismo , Glucuronosiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Lactamas/metabolismo , Lactamas/farmacologia , Glucuronídeos/metabolismo
12.
J Pharm Biomed Anal ; 242: 116020, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359493

RESUMO

The types and quantities of new psychoactive substances synthesized based on structural modifications have increased rapidly in recent years and pose a great challenge to clinical and forensic laboratories. N-benzyl derivatives of phenethylamines, 25B-NBOH, 25E-NBOH, 25H-NBOH, and 25iP-NBOMe have begun to flow into the black market and have caused several poisoning cases and even fatal cases. The aim of this study was to avoid false negative results by detecting the parent drug and its metabolites to extend the detection window in biological matrices and provide basic data for the simultaneous determination of illegal drugs and metabolites in forensic and emergency cases. To facilitate the comparison of metabolic characteristics, we divided the four compounds into two groups of types, 25X-NBOH and 25X-NBOMe. The in vitro phase I and phase II metabolism of these four compounds was investigated by incubating 10 mg mL-1 pooled human liver microsomes with co-substrates for 180 min at 37 â„ƒ, and then analyzing the reaction mixture using ultrahigh-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. In total, 70 metabolites were obtained for the four compounds. The major biotransformations were O-demethylation, hydroxylation, dehydrogenation, N-dehydroxybenzyl, N-demethoxybenzyl, oxidate transformation to ketone and carboxylate, glucuronidation, and their combination reactions. We recommended the major metabolites with high peak area ratio as biomarkers, B2-1 (56.61%), B2-2 (17.43%) and B6 (17.78%) for 25B-NBOH, E2-1 (42.81%), E2-2 (34.90%) and E8-2 (10.18%) for 25E-NBOH, H5 (49.28%), H2-1 (21.54%), and H1 (18.37%) for 25H-NBOH, P3-1 (10.94%), P3-2 (33.18%), P3-3 (14.85%) and P12-2 (23.00%) for 25iP-NBOMe. This is a study to evaluate their metabolic characteristics in detail. Comparative analysis of the N-benzyl derivatives of phenethylamines provided basic data for elucidating their pharmacology and toxicity. Timely analysis of the metabolic profiles of compounds with abuse potential will facilitate the early development of regulatory measures.


Assuntos
Drogas Desenhadas , Alucinógenos , Humanos , Fenetilaminas/análise , Cromatografia Líquida de Alta Pressão , Microssomos Hepáticos/metabolismo , Drogas Desenhadas/metabolismo
13.
Environ Pollut ; 345: 123514, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346634

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) is an ozonation product of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD). 6PPD-Q has recently been detected in various environmental media, which may enter the human body via inhalation and skin contact pathways. However, the human metabolism of 6PPD-Q has remained unknown. This study investigated the in vitro Cytochrome P450-mediated metabolism of 6PPD-Q in human and rat liver microsomes (HLMs and RLMs). 6PPD-Q was significantly metabolized at lower concentrations but slowed at high concentrations. The intrinsic clearance (CLint) of 6PPD-Q was 21.10 and 18.58 µL min-1 mg-1 protein of HLMs and RLMs, respectively, suggesting low metabolic ability compared with other reported pollutants. Seven metabolites and one intermediate were identified, and metabolites were predicted immunotoxic or mutagenic toxicity. Mono- and di-oxygenation reactions were the main phase I in vitro metabolic pathways. Enzyme inhibition experiments and molecular docking techniques were further used to reveal the metabolic mechanism. CYP1A2, 3A4, and 2C19, especially CYP1A2, play critical roles in 6PPD-Q metabolism in HLMs, whereas 6PPD-Q is extensively metabolized in RLMs. Our study is the first to demonstrate the in vitro metabolic profile of 6PPD-Q in HLMs and RLMs. The results will significantly contribute to future human health management targeting the emerging pollutant 6PPD-Q.


Assuntos
Citocromo P-450 CYP1A2 , Microssomos Hepáticos , Fenilenodiaminas , Humanos , Ratos , Animais , Citocromo P-450 CYP1A2/metabolismo , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Quinonas , Cinética
14.
Arch Toxicol ; 98(4): 1095-1110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369618

RESUMO

Chlorzoxazone (CZX), a benzoxazolone derivative, has been approved for the treatment of musculoskeletal disorders to relieve localized muscle spasm. However, its idiosyncratic toxicity reported in patients brought attention, particularly for hepatotoxicity. The present study for the first time aimed at the relationship between CZX-induced hepatotoxicity and identification of oxirane intermediate resulting from metabolic activation of CZX. Two N-acetylcysteine (NAC) conjugates (namely M1 and M2) and two glutathione (GSH) conjugates (namely M3 and M4) were detected in rat & human microsomal incubations with CZX (200 µM) fortified with NAC or GSH, respectively. The formation of M1-M4 was NADPH-dependent and these metabolites were also observed in urine or bile of SD rats given CZX intragastrically at 10 mg/kg or 25 mg/kg. NAC was found to attach at C-6' of the benzo group of M1 by sufficient NMR data. CYPs3A4 and 3A5 dominated the metabolic activation of CZX. The two GSH conjugates were also observed in cultured rat primary hepatocytes after exposure to CZX. Inhibition of CYP3A attenuated the susceptibility of hepatocytes to the cytotoxicity of CZX (10-400 µM). The in vitro and in vivo studies provided solid evidence for the formation of oxirane intermediate of CZX. This would facilitate the understanding of the underlying mechanisms of toxic action of CZX.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Clorzoxazona , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/metabolismo , Ativação Metabólica , Ratos Sprague-Dawley , Microssomos Hepáticos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Compostos de Epóxi/metabolismo , Glutationa/metabolismo
15.
J Med Chem ; 67(5): 3643-3667, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393759

RESUMO

Steroid-based histamine H3 receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H3 receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent H3R activity together with significant in vivo H3 antagonism. Optimization of the chemotype was initiated with special emphasis on the elimination of the hERG and muscarinic affinity. Additionally, ligand-based SAR considerations and molecular docking studies were performed to predict binding modes of the molecules. The most promising compounds (XXI, XXVIII, and XX) showed practically no muscarinic and hERG affinity. They showed antagonist/inverse agonist property in the in vitro functional tests that was apparent in the rat in vivo dipsogenia test. They were considerably stable in human and rat liver microsomes and provided significant in vivo potency in the place recognition and novel object recognition cognitive paradigms.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Humanos , Animais , Histamina , Agonismo Inverso de Drogas , Receptores Histamínicos H3/metabolismo , Simulação de Acoplamento Molecular , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Esteroides , Microssomos Hepáticos/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos
16.
Chem Biol Interact ; 392: 110924, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401715

RESUMO

The aim of this study was to investigate the potential drug-drug interactions (DDIs) between ticagrelor and other drugs as well as their underlying mechanisms. Rat liver microsome (RLM) reaction system was used to screen potential DDIs in vitro, and ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect the levels of ticagrelor and AR-C124910XX, the main metabolite of ticagrelor. A total of 68 drugs were screened, 11 of which inhibited the production of AR-C124910XX to 20% or less, especially two flavonoids (myricetin and quercetin). The half-maximal inhibitory concentration (IC50) of myricetin on ticagrelor was 11.51 ± 0.28 µM in RLM and 17.96 ± 0.54 µM in human liver microsome (HLM). The IC50 of quercetin in inhibiting ticagrelor in RLM and HLM was 16.92 ± 0.49 µM and 60.15 ± 0.43 µM, respectively. They all inhibited the metabolism of ticagrelor through a mixed mechanism. In addition, Sprague-Dawley (SD) rats were used to study the interactions of ticagrelor with selected drugs in vivo. We found that the main pharmacokinetic parameters including AUC (0-t), AUC (0-∞) and Cmax of ticagrelor were significantly increased when ticagrelor was combined with these two flavonoids. Our results suggested that myricetin and quercetin of flavonoids both had significant effects on the metabolism of ticagrelor, providing reference data for the clinical individualized medication of ticagrelor.


Assuntos
Quercetina , Espectrometria de Massas em Tandem , Humanos , Ratos , Animais , Ticagrelor/farmacologia , Ticagrelor/metabolismo , Quercetina/farmacologia , Cromatografia Líquida/métodos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Flavonoides/farmacologia , Flavonoides/metabolismo , Microssomos Hepáticos/metabolismo
17.
PLoS One ; 19(2): e0297191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38300925

RESUMO

Greyhounds metabolize cytochrome P450 (CYP) 2B11 substrates more slowly than other dog breeds. However, CYP2B11 gene variants associated with decreased CYP2B11 expression do not fully explain reduced CYP2B11 activity in this breed. P450 oxidoreductase (POR) is an essential redox partner for all CYPs. POR protein variants can enhance or repress CYP enzyme function in a CYP isoform and substrate dependent manner. The study objectives were to identify POR protein variants in greyhounds and determine their effect on coexpressed CYP2B11 and CYP2D15 enzyme function. Gene sequencing identified two missense variants (Glu315Gln and Asp570Glu) forming four alleles, POR-H1 (reference), POR-H2 (570Glu), POR-H3 (315Gln, 570Glu) and POR-H4 (315Gln). Out of 68 dog breeds surveyed, POR-H2 was widely distributed across multiple breeds, while POR-H3 was largely restricted to greyhounds and Scottish deerhounds (35% allele frequencies), and POR-H4 was rare. Three-dimensional protein structure modelling indicated significant effects of Glu315Gln (but not Asp570Glu) on protein flexibility through loss of a salt bridge between Glu315 and Arg519. Recombinant POR-H1 (reference) and each POR variant (H2-H4) were expressed alone or with CYP2B11 or CYP2D15 in insect cells. No substantial effects on POR protein expression or enzyme activity (cytochrome c reduction) were observed for any POR variant (versus POR-H1) when expressed alone or with CYP2B11 or CYP2D15. Furthermore, there were no effects on CYP2B11 or CYP2D15 protein expression, or on CYP2D15 enzyme kinetics by any POR variant (versus POR-H1). However, Vmax values for 7-benzyloxyresorufin, propofol and bupropion oxidation by CYP2B11 were significantly reduced by coexpression with POR-H3 (by 34-37%) and POR-H4 (by 65-72%) compared with POR-H1. Km values were unaffected. Our results indicate that the Glu315Gln mutation (common to POR-H3 and POR-H4) reduces CYP2B11 enzyme function without affecting at least one other major canine hepatic P450 (CYP2D15). Additional in vivo studies are warranted to confirm these findings.


Assuntos
Sistema Enzimático do Citocromo P-450 , Farmacogenética , Cães , Animais , Sistema Enzimático do Citocromo P-450/genética , Frequência do Gene , Microssomos Hepáticos/metabolismo , Mutação , Variação Genética
18.
Pharm Biol ; 62(1): 207-213, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353248

RESUMO

CONTEXT: The effect of the active ingredients in traditional Chinese medicines on the activity of cytochrome P450 enzymes (CYP450s) is a critical factor that should be considered in TCM prescriptions. Physcion, the major active ingredient of Rheum spp. (Polygonaceae), possesses wide pharmacological activities. OBJECTIVES: The effect of physcion on CYP450 activity was investigated to provide a theoretical basis for use. MATERIALS AND METHODS: The experiments were conducted in pooled human liver microsomes (HLMs). The activity of CYP450 isoforms was evaluated with corresponding substrates and probe reactions. Blank HLMs were set as negative controls, and typical inhibitors were employed as positive controls. The inhibition model was fitted with Lineweaver Burk plots. The concentration (0, 2.5, 5, 10, 25, 50 and 100 µM physcion) and time-dependent (0, 5, 10, 15 and 30 min) effects of physcion were also assessed. RESULTS: Physcion suppressed CYP2C9, 2D6 and 3A4 in a concentration-dependent manner with IC50 values of 7.44, 17.84 and 13.50 µM, respectively. The inhibition of CYP2C9 and 2D6 was competitive with the Ki values of 3.69 and 8.66 µM, respectively. The inhibition of CYP3A4 was non-competitive with a Ki value of 6.70 µM. Additionally, only the inhibition of CYP3A4 was time-dependent with the KI and Kinact parameters of 3.10 µM-1 and 0.049 min-1, respectively. CONCLUSIONS: The inhibition of CYP450s by physcion should be considered in its clinical prescription, and the study design can be employed to evaluate the interaction of CYP450s with other herbs.


Assuntos
Citocromo P-450 CYP3A , Emodina/análogos & derivados , Microssomos Hepáticos , Humanos , Citocromo P-450 CYP2C9 , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450
19.
Xenobiotica ; 54(3): 124-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358311

RESUMO

Nivasorexant was the first orexin-1 selective receptor antagonist entering clinical development. Despite encouraging preclinical evidence in animal models, a proof-of-concept trial in binge-eating patients recently failed to demonstrate its clinical utility in this population.Across species, nivasorexant clearance was driven by metabolism along seven distinct pathways, five of which were hydroxylation reactions in various locations of the molecule. The exact sites of metabolism were identified by means of mass spectrometry, the use of deuterated analogues, and finally confirmed by chemical references.CYP3A4 was the main cytochrome P450 enzyme involved in nivasorexant metabolism in vitro and accounting for about 90% of turnover in liver microsomes. Minor roles were taken by CYP2C9 and CYP2C19 but individually did not exceed 3-7%.In the rat, nivasorexant was mostly excreted via the bile after extensive metabolism, while urinary excretion was negligible. Only traces of the parent drug were detected in urine, bile, or faeces.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Humanos , Ratos , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Citocromo P-450 CYP3A/metabolismo , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP2C19/metabolismo
20.
Drug Metab Dispos ; 52(5): 345-354, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360916

RESUMO

It is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold. To explore the hypothesis whether the higher degree of plasma protein binding for acids contributes to the in vitro-in vivo correlation (IVIVC) disconnect, 68 proprietary compounds were incubated with rat liver microsomes in the presence and absence of 5% plasma. A minor impact of plasma on clearance IVIVC was found for moderately bound compounds (fraction unbound in plasma [fup] ≥1%). However, addition of plasma significantly improved the IVIVC for highly bound compounds (fup <1%) as indicated by an increase of the average fold error from 0.10 to 0.36. Correlating fup with the scaled unbound intrinsic clearance ratio in the presence or absence of plasma allowed the establishment of an empirical, nonlinear correction equation that depends on fup Taken together, estimation of the metabolic clearance of highly bound compounds was enhanced by the addition of plasma to microsomal incubations. For standard incubations in buffer only, application of an empirical correction provided improved clearance predictions. SIGNIFICANCE STATEMENT: Application of the well-stirred liver model for clearance in vitro-in vivo extrapolation (IVIVE) in rat generally underpredicts the clearance of acids and the strong protein binding of acids is suspected to be one responsible factor. Unbound intrinsic in vitro clearance (CLint,u) determinations using rat liver microsomes supplemented with 5% plasma resulted in an improved IVIVE. An empirical equation was derived that can be applied to correct CLint,u-values in dependance of fraction unbound in plasma (fup) and measured CLint in buffer.


Assuntos
Microssomos Hepáticos , Modelos Biológicos , Animais , Ratos , Microssomos Hepáticos/metabolismo , Taxa de Depuração Metabólica , Fígado/metabolismo , Hepatócitos/metabolismo , Proteínas Sanguíneas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...